› Continuous sparse estimation of a Gaussian Mixture Model with unknown covariances - Romane Giard, Institut Camille Jordan
17:45-18:10 (25min)
› UNHaP : Unmixing Noise from Hawkes Processes - Virginie Loison, Modèles et inférence pour les données de Neuroimagerie, Marqueurs cardiovasculaires en situation de stress
18:10-18:35 (25min)
› Optimal transport with Heterogenously Missing Data - Linus Bleistein, Inria de Paris, Artificial Intelligence Laboratory [EPFL], Université Paris Dauphine-PSL
18:35-19:00 (25min)
› Approche bayésienne pour évaluer l'incertitude et la robustesse d'indicateurs de graphes en neurosciences - Alice Chevaux, INRIA
15:30-15:55 (25min)
› Iterated forward scheme to construct proposals for sequential Monte Carlo algorithms - Sylvain Procope-Mamert, Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas]
15:55-16:20 (25min)
› PAC-Bayesian Reconstruction Guarantees for Variational Autoencoders for Time Series - Chloé Hashimoto-Cullen, Laboratoire de Probabilités, Statistique et Modélisation
16:20-16:45 (25min)
› Benign landscape for Burer-Monteiro factorizations of MaxCut-type semidefinite programs - Faniriana Rakoto Endor, CEntre de REcherches en MAthématiques de la DEcision
17:00-19:15 (2h15)
› Validation of Computer Codes via Mixture Model Estimation - Negar Soleimani, AgroParisTech
17:00-19:15 (2h15)
› Variational Inference with Mixture of Isotropic Gaussians - Marguerite Petit Talamon, Centre de Recherche en Économie et Statistique
17:00-19:15 (2h15)
› Statistical and Geometrical properties of regularized Kernel Kullback-Leibler divergence - Clémentine Chazal, Centre de Recherche en Économie et Statistique
17:00-19:15 (2h15)
› Gradient-free variational inference within exponential families using least squares regression with applications on discrete distributions and likelihood-free models - Le Fay Yvan, Centre de Recherche en Économie et Statistique
17:00-19:15 (2h15)
› Understanding the bias induced by Local Differential Privacy - Jean Dufraiche, MAGNET (Machine Learning in Information Networks)
17:00-19:15 (2h15)
› TAMIS: Tailored Membership Inference Attacks on Synthetic Data - Paul Andrey, MAGNET (Machine Learning in Information Networks)
17:00-19:15 (2h15)
› Growing Neural Networks: Spotting Expressivity Bottlenecks and Fixing Them Optimally - Théo Rudkiewicz, TAU team
17:00-19:15 (2h15)
› Joint estimation of bipartite network collections. Application to plant-pollinator networks - Louis LACOSTE, Mathématiques et Informatique Appliquées
17:00-19:15 (2h15)
› Harnessing Mixed Features for Imbalance Data Oversampling: Application to Bank Customers Scoring - Abdoulaye SAKHO, Laboratoire de Probabilités, Statistique et Modélisation, Artefact [Paris]
17:00-19:15 (2h15)
› Hallucinations in statistical inverse problems: discussion, characterization and exploration in PET imaging - Ramy Merabet, Centre Borelli
17:00-19:15 (2h15)
› Streaming Federated Learning with Markovian Data - Tan-Khiem HUYNH, Centre Inria de Lyon
17:00-19:15 (2h15)
› Mask-Conditional Coverage for General Missing Data Mechanisms - Jiarong FAN, Université Paris Saclay
17:00-19:15 (2h15)
› Weakly supervised learning methods for the classification of patients from flow cytometry data - Pierre-André Mikem, Laboratoire de Mathématiques d'Orsay, Metafora biosystems
17:00-19:15 (2h15)
› Group-Specific Thresholding to Preserve Fairness of Stochastic Classifiers - Shreya Venugopal, Machine Learning in Information Networks
17:00-19:15 (2h15)
› Better Capturing Interactions between Products in Retail: Revisited Negative Sampling for Basket Choice Modeling - Vincent Auriau, Mathématiques et Informatique pour la Complexité et les Systèmes, Artefact Research Center
17:00-19:15 (2h15)
› Time Series Motif Discovery: A Comprehensive Evaluation - Valerio Guerrini, CB - Centre Borelli - UMR 9010
17:00-19:15 (2h15)
› Set To Be Fair: Set-Valued Classification Under Fairness Constraints - Eyal Cohen, Laboratoire de Probabilités, Statistique et Modélisation, Mathématiques Appliquées Paris 5, Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne)
17:00-19:15 (2h15)
› Estimating ratios of normalizing constants using stochastic approximation: the SARIS algorithm - Charlotte Baey, Université de Lille
11:15-11:45 (30min)
› Bayesian deep learning, overview and challenges - Julyan Arbel, INRIA
11:45-12:15 (30min)
› Equivariant U-Nets for effective image deblurring: design principles and challenges - Jérémy Scanvic, Laboratoire de Physique, ENS de Lyon, Foxstream
15:30-15:55 (25min)
› Conditional Sampling with Score-Based Models via Particle Methods - Stanislas Strasman, Laboratoire de Probabilités, Statistique et Modélisation
15:55-16:20 (25min)
› Selecting informative conformal prediction sets - Ulysse Gazin, Laboratoire de Probabilités, Statistique et Modélisation
16:20-16:45 (25min)